Latent classification models for binary data
نویسندگان
چکیده
One of the simplest, and yet most consistently well-performing set of classifiers is the näıve Bayes models (a special class of Bayesian network models). However, these models rely on the (näıve) assumption that all the attributes used to describe an instance are conditionally independent given the class of that instance. To relax this independence assumption, we have in previous work proposed a family of models, called latent classification models (LCMs). LCMs are defined for continuous domains and generalize the näıve Bayes model by using latent variables to model class-conditional dependencies between the attributes. In addition to providing good classification accuracy, the LCM model has several appealing properties, including a relatively small parameter space making it less susceptible to over-fitting. In this paper we take a first-step towards generalizing LCMs to hybrid domains, by proposing an LCM model for domains with binary attributes. We present algorithms for learning the proposed model, and we describe a variational approximation-based inference procedure. Finally, we empirically compare the accuracy of the proposed model to the accuracy of other classifiers for a number of different domains, including the problem of recognizing symbols in black and white images.
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملUsing multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملParameter Identifiability Issues in a Latent Ma- rkov Model for Misclassified Binary Responses
Medical researchers may be interested in disease processes that are not directly observable. Imperfect diagnostic tests may be used repeatedly to monitor the condition of a patient in the absence of a gold standard. We consider parameter identifiability and estimability in a Markov model for alternating binary longitudinal responses that may be misclassified. Exactly ...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 42 شماره
صفحات -
تاریخ انتشار 2009